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A dynamical model of behavioural specifications

Tomasz Nowicki

Abstract

We give a description of the behavioral specification in terms of infinite sequences. This descrip-
tion allows the use of the well developped theory of subshifts of finite type and the formulation of
some invariance properties. Our aim is to introduce a new language in this area.

0 Introduction

In this report we introduce a mathematical model for the system behaviour paradigm. This behavioral
specification is explained in [3], where the motivation, general introduction and specific examples are
given. We assume that this paper is known to the reader.

First we give the outline of the idea. We deal with a system being a (finite) set of states. We
observe a state, it may change into another one by some prescribed rules, this is the evolution of the
system.

We assume the following : The system behaviour is described by the sequences of its states. Not
all the sequences are possible. The restrictions are given by the rules, represented by tasks, which are
transformations of the set of states into itself.

In fact this transformations are parameterized by the same set of states (or : a task is a map
from the carthesian product of two copies of the set of states into one copy). We understand this in a
dynamical way, given an initial state (paprameter) a rule transforms a given (source) state into a new
(target) one. We say that a task starts at one state, ends at the second one and the state evolued to
the result of the task.

Possible sequences are those for which next element is an image of the previous one by a task
started some time before. We understand that the set of states and the set of tasks are given and finite
(or countable).

Our aim is the understanding and classification of asymptotical behaviour of the system, i.e. of
such sequences. The first step is to separate possible behaviors of the system (possible sequences) into
two classes, in one the behaviour is eventually constant (which may be called a dead-lock), in the other
is not. Of course this is very rough, as for example periodic behaviour is mixed up with an aperiodic
one, but the method we use can be developed in order to deal with more involved problems

Now we sketch the model. In the next section (1) we give precise definitions. In section 2 we
construct some interesting invariant sets in the most general situation. Section 3 follows with some
more specific models, next (section4) we describe our model in terms of the theory of subshifts of finite
type and we show he links with a thermodynamical formalism.

* In order to settle the notion of the system we introduce the set of possible states called a world.
The behaviour of the system is a sequence of states, so we assume that the changes occur
discretely (i.e. not continuously). We shall say earlier or later (i.e. introducing time) in the sense
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of the precedence in such a sequence. The time is discrete and is modeled by natural (or entire)

numbers.

" Actions are transformations of the world into itself. So we may say that an action changes a

state, meaning that the next element of the sequence is an image of the previous one under the

action.

" In fact we want the action to be a rule how to change the state when the action is terminated

given a state when it is initiated. Therefore we may speak about tasks. A task is a function from

world into itself parameterized by the world.

" The set of parameters such that the task is not identity on the world is called a preguard of the

task.

"* The set of states which are changed by some parameters is called a postguard of the task.

"* The notions of guards appearing in [3] are defined in a different way, but essentially describe the

same properties.

" In what follows we think of an action to be a task with a fixed parameter. The preguard and

the postguard of an action are those of corresponding task.

" The world and some set of tasks is called a project. Possible sequences realized by a project are

such that may be submitted to some additional restrictions.

" One of such restrictions could be described by the notion of the agency (see section 3).

- Given an abstract (finite) set A we assign to each moment a collection of card A actions.

- The change in state is due to one of the actions (called the active action in contrast to other

pending actions).

- The change in assignment is due to two rules. First we skip the active action and maybe
some actions for which the current state is not in the postguard. Then we add actions such

that the new state is in their preguards.

" We may impose some restrictions on the distribution of the actions. For example we may want

that an action persists until it is terminated i.e. until there was an attempt to implement it in the

system. That means that for a given agent an action assigned to it at some moment (initiated)
does not change in following moments until it becomes active (at some moment the system is
changed by this action or if not in the postguard the action is abandonned).

" We may also want that any initiated action terminates (becomes active or is skipped - 'tried to
be active but did not meet a postguard condition').

" Often a carthesian model is used. Then the world is a carthesian product of some sets and the
actions consist in changing some coordinates of the state by the function of same coordinates of

the parameters.

" The carthesian model is idempotent, by this we mean that using twice one action consecutively
gives the same result as using it just once.
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" There is a natural dynamic in the set of sequences, which is given by a shift (see section 4). This
corresponds to the evolution in time. If we say that some evolution is (time-)invariant we mean
that some subset of such a collection is invariant under the shift.

" In the set of sequences we may introduce distance and probability based on distance and proba-
bility in the world. Thus we may speak of convergence, limits and attractors in the topological
and measure-theoretical senses.

" For a finite world the theory of such sequences is called the theory of subshifts of finite type. In
this theory one may describe such physical notions as energy, pressure or entropy.

1 Definitions

In this section we introduce the notions which will be used in this report. We shall use the following
notation :

"* We denote by .F(A, B) the set BA of all maps from A to B.

"* For A, B C W and Z C .F(WxW,W) we denote by Z(A, B) the set {w E W : 3 ZEZ,aEA,bEB W

Z(a, b)}.

Now we construct the system.

"* We shall call the set W a world. Essentially we think that W is finite but large.

"* We call an element from .F(W x W, W) a task.

"* Given p E W and a task Z we call Zp .EF(W, W) defined by Zp(w) = Z(p, w) an action.

"* Let Z C F(W x W, W). (We think of it to be finite). A project is a pair (W, Z).

" A path of the project is a sequence (w,)' 0 E Wf such that for any i > 1 there exists a Z E Z
and j < i such that wi+1 = Z(wj, wi).

"* Remark We may say also that for any path in a project there exists a sequence of natural
numbers ji and a sequence of tasks Zi such that wi+1 = Zi(wiwi), and ji < i for i > 0.
The sequence j = ji might not be defined in an unambiguous manner. E.g. if wo = w, and
W3 = Z(wo, w2 ) then j2 may be either 0 or 1.

"* Given a project we call a preguard of the task Z E Z the set

Pz = {p E W: 3,EW Z(p, w) 5 w} C ).

We call a postguard of Z the set

Qz = {q E W 3]W Z(w,q) 0 q} C W .

"* Remark The notions of guards may be introduced in a more general way. For any task Z E Z
sets P and Q called pre-and post guards such that Z(p, w) = w for each p E WV \ P and each
w E W and Z(w, q) = q for each q E W \ Q and each w E W. Clearly the above defined sets Pz
and Qz are minimal with this properties as allways Pz C P and Qz C Q. For some technical
reasons it may be sometimes usefull to have less restrictive definitions. This have no importance
in following considerations and we shall not discuss this any further.
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* The preguard and the postguard of the project are the unions

'P= UPZ Q= UQz.
ZEZ ZEZ

2 Invariance

Now we shall now define inductively some subsets of W and Z.

Definition 2.1 First we set Wo = W. Suppose W, is defined for some n > 0 then we put

P. = {p E W. :3EWn,ZEZ Z(p, w) # W}

Q. = {q E W, 3WEW,,ZEZ Z(w, q) # q}

Z,n { Z E Z :3pEO,,,qE Q Z(p, q) # q}

W.+1 = Z.(P., Qn) = {w Wn : 3pEP.,qEQ.,ZEZ w = Z(p, q)}

Lemma 2.1 We have Wn+1 C W., *P.+i C Pn, Q.+1 C Qn and Z.+1 C Zn.

Proof :

1. Because Zo C Z C F(W x W, W), Po C W and Qo C W we have W 1 = Zo(Po, Qo) C

Z(W, W) c W = Wo.

2. Suppose that Wi+ 1 C Wi for i < n with n > 0.

3. Let p E Pi+1 then there exists w E Wi+1 C Wi such that Z(p, w) $ w for some Z E Z therefore

p E Pi.

4. Similarly if q E Qi+1 then there exists a Z and w E Wi+a C Wi such that Z(w, q) 5 q therefore

q E Qi.

5. If Z E Zi+1 then there are p E Pi+1 C Pi and q E Qi+1 C Qi such that Z(p, q) j0 q therefore

ZE Z i.

6. Now we can prove that Wn+1 C W,] We have

Wn+i = Zn(Pn, Q.) C Zn-i(Pn-i, Qn-1) = W-

These sets have following properties.

* Three conditions are equivalent P. 5 0 <= Q, ý 0 <* Zn $ 0

Proof : Each of this conditions says that there exist Z E Z, p E W) and q E Wn such that

Z(p, q) $ q.

* For any A C Wn \ P, and any B C Wn we have Zn(A, B) C B.

Proof : If A = 0 then Z, (A, B) = 0. Otherwise let a E A then for any w E W, and any Z E Z

we have Z(a, w) w. Therefore for any Z E Z, we have Z(a, B) B and Zn(A, B) = B.

TR 95-01(201) 6 January, 1995
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* For any B C WM \ Q, and any A C W, we have Z,,(A, B) C B.

Proof : If B = 0 or A = 0 then Zn(A, B) = 0. Otherwise let b E B then for any w E W, and any
Z E Z we have Z(w,b) = b. Therefore for any Z E Z, we have Z(w,B) = B and Z•(A,B) = B.

Theorem 2.1 For any n the pair (Wn, Zn) is a project.

That means that Z, C .7(W,, x W,, W,,) or in other words that Zn(Wn, Wn) C Wn.
Proof: We have

Zn(Wn, W.) = Zn(W \ Pn, W.) U Zn(Pn, n\ Qn) U Zn(P.,Qn)

C Wn U(Wn \Qn) U )n+ C Wn.-

0

Corrolary 2.1

1. For any n the pair (W0,, Z) is a project.

2. We have the following invariance Z(Wn, W,,+1) C Wn+1.

Proof :

1. Again we have to prove Z(Wn, Wn) C W•,. Consider w = Z(p, q), for p, q E Wn. If w = q then
w E W/Vn, if w $ q then Z E Zn, p E Pn and q E Qn. Hence w E Wn+l C Wn.

2. Again we use the fact that if for p, q E Wn and Z(p, q) 0 q then p E P., q E Q, and Z E Z,, and
Z(p, q) E W,+,. Let Z E Z, p E VV, and q E Wn+ 1 C Wn. If w = Z(p, q) = q then w E )Wn•+l.

Otherwise w E Zn(P7n, Qn) = Wn,+.

We remind that for a path (wi) of a project we may define for any i the number ji < i is such that
there exists Z E Z such that wi+1 = Z(wji, wi)). This sequence is thought to be fixed for a given path,
its properties are however valid for any such sequence.

"* Define v(i) = max{n : wi E W,,} _• co, where co is assumed of wi E Wn for all n. We have

v(i + 1) > min(v(ji) + 1, v(i)).

Proof : Let v' = min(v(ji), v(i)), therefore wj,, wi E W,,,. We have either wi+1 = wi and then
v(i + 1) = v(i) or wj, E Po,,, and wi E Q,, and Z E Z•,. Therefore wi+1 = Z(wj,, wi) E Wv,+a,
and v(i + 1) > v' + 1. Hence if v(ji) >_ v(i) then v(i + 1) _> v(i) and if v(ji) < v(i) then
v(i + 1) > z(ji) + 1.

"• Define iP(i)= min{fv(k) : k > i} max{n Vm>iwm E Wn}. Then Fi(i) is not decreasing.

Proof: We have P(i) = min(i;(i + 1), v(i)) _• (i + 1).

Theorem 2.2 If a path of a project satisfies j(i) --+ co for i --+ co for some sequence ji then either
Wm = WM for some M and all m > M or for each n there exists an M such that Wm E W" for all
m> M.

January, 1995 7 TR 95-01(201)
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Proof : It goes through following steps.

1. If the path is not eventually constant then the number of changes in the path m(i) = card {0 <
k < i : Wk+1 # Wk} increases with i to co.

2. In this case we shall prove inductively that for any n < oo there exists an M, such that Fi(Mn) _
n.

3. For n = 0 we have M0 = 0 as wi E W = WO for all i.

4. Let now n > 0 and suppose that we found M = M,. We have by definition of Mn that wm E In
for all m > M.

5. Let k > M be minimal such that ji > M for all i > k. This is possible as ji - oo. Let N > k
be minimal with WN+1 $ WN. Such N exists as the sequence is not eventually constant.

6. We prove inductively that Wm E W,+1 for m > N.

"* For m = N we have by definition of N that WN E Qn, wiN E 1'n and WN+1 E Zn(Pn, Q.) =

Wn+1 .

"* Inductively for m > N we have Wm E W,+, and wjm E W, and Wm+l E Z(W,, wn+l) C
Wn+ 1.

"* We have therefore i(N + 1) > n + 1.

7. We set M(n + 1) := N + 1, because of the last remark the proof is done.

0

Corrolary 2.2 If for some w and for all Z E Z we have Z(w, w) $ w and ji --* oo then there is no
eventually constant sequences terminating by wi = w for large i.

Proof : Clearly for i large enough wi+1 = Z(wji, wt) = Z(w, w) 34 w. 0

3 Agencies and Managements

In this section we introduce a specific model which realizes the sequences from last section. First we
say what are the actions which can change the world.

"* A project (W, Z) defines the set of available actions V C Y(W, W) given by

v = {¢ E W, W) : 3ZEZ,PEPZ VW (W) = ZP(w) = Z(p, w)}.

"• An action Zp is called idle, denoted by Zp = id, if Z(pw) = w for any w E W. A task Z is called
idle if Zp = id for any p E W (for a generalized notion of a preguard we demand only Zp = id
for p in the preguard of Z).

"* We say that the project is complete if either P = Uz Pz = W or there is an idle task in Z.

"• If a project is not complete we complete it by adding an idle task to Z.

TR 95-01(201) 8 January, 1995
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Now we are ready to describe tha way the world is changed.

Definition 3.1 Given a (finite) set A (called the agency or the set of agents) we define a mana-
gement of a (completed) project P = (W, Z) to be a set of functions M = .F(A, V) valued in the set
of available functions V.

Each elements of this set may be thought of as a decision how to distribute among the agents A E A
available actions from V. The terms larger or smaller agency will refer to the cardinality of the set A.

An enterprise £ of an agency A realizing (or managing) a (completed)project P is a (maximal)

subset of £ C (W x M)- of sequences which fulfills the condition stated below. First we explain the
structure of an enterprise.

If e E &, then e = (wi,aj)?=o. For any j E X we have aj E M, therefore for any A E A the function
aj (A) E V is an available map of the form Zp for some i E I, Z E Zi C *P and p E Pi. Hence an agent may act
on the world W -- * W by w -+ Zp(w) = Z(p, w), which we may write w 1-4 aj(A)(w).

The condition reads : For any j there exists an A E A such that

* wj+l = aj(A)(wj) and

* aj+j(A) = Z,,,+, for some Z E P. (It means implicitly that wi+1 fulfills the preguard of Z E
Z C P-, this is always possible for some Z, as the project was completed).

* Moreover if aj+i(A) 5 ai(A) then ac+i(A) = Z,+, for some Z, i.e. new available actions
assigned to the agents at this moment must be anchored at wj+1 .

We say that an enterprise is quiet if the distribution of non-idle activities of agents aj~l does not
differ to much from the distribution aj. By this we mean that if wj+l = aj(Ao)(wj) and A i A0 then
if aj(A) $ id then aj+l(A) = aj(A).

A short way to say it is that at the moment j the change in the distribution of available actions may occur
only at idle actions and the action which just took place. The management takes as little decision as possible,
summoning only agents which are not active and the agent which just finished its job.

We say that the enterprise is active if for any agent with an idle activity aj(A) = id we have
aj+I(A) is not idle if possible. By this we mean that if wj+l belongs to a preguard Pi, whose task is
not idle then aj+±(A) $ id for A E A.

The projection of an enterprise on WAr is called a development E)

{(wj),ý=0 : 3 e E 9e = (j jýO

for some sequence of aj. An element of a development (i.e. a sequence (wi)) is called a path.

"* Given the world W we say that the enterprise £ is wider than £V if V' C D.

" We say that an enterprise E is developing quicker than V' if for any sequence (w') E D' and
j' > 0 there exists a sequence (w) E D and j <j' such that for any I > 0 we have wý,+1 = wj+t.
That means that any subsequence from D9' appears sooner in V.

"* We use the word eventually in front of wider or quicker if there exists an N such that these
relations are restricted for the all sequences after rejecting first N elements.

In order to compare two developments we have to consider the following equivalence relation

January, 1995 9 TR 95-01(201)
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Definition 3.2 We say that a sequence is simple if the equality wj = wj+l for some j implies

wi = wj for all i > j.

A simplification of a sequence is its maximal simple subsequence.

We may think of it as of a map s : "•" - W" such s(wj) = wk, with k0 = 0 and if kj is defined then

either kj+l = i is minimal i > kj such that wi j Wk, or if wi = wj for all i > j then k1+l = kj + 1.

We say that two sequences are simply the same if they have same simplifications

Example 3.1 Consider the world W = {0, 1 }N for some N E Af. Let P = U N+Io{Z} where for i =

N we have Pi = {w E W : w1 = 0}, Qi = {w E W : wj = 1,j < i} and Zi(p,w)j = 1 for j_ i
and Zi(p,w)j = O for j > i. Fori = 0 we set PO = {(1,...,1)}, Qo = W and Zo(p,w) = (0,...,0). For

= N +1 we set the preguard PN+1 = W\ Ui 0oZ&(., W), postguardQ = Wand Z(p, w) = (0,. .,0).
We complete the project in a standard way.

This project is ending in idle actions if the agency has cardinality smaller than N.

Example 3.2 Let W = {0,1,2,3}. For i = 1,2 let Zi {Zi} with Zi(p,w) 0 for w = O,i,

Zi(p, 3) = i and Zi(p, 3 - i) = i. If Qi = {0} then the task Zi is idle. If 0 _ Qi $ 0 then the task
is tight. If the project consists only of one of these tasks then it lands at 0 after at most three steps.

If the project includes both of them then eventually periodic sequences as 312121212 ... appear in the

development.

Theorem 3.1 Two agencies of the same cardinality realizing same project have the same development.

Proof : We have to show that any sequence (wi) from the development V realized by the management

M of the agency A belongs to the development D9' realized by the management .M' of the agency A'.
If (wj) E V then there exist aj and Aj, j = 0, 1,..., such that the sequence (wj, aj, Aj) E Ml. In
view of equal cardinalities there exists a bijection a : A -- A'. We define a sequence (wj, aj, A[') by

Aý = a(Aj) and aý(A') aj(a-1 (A')). This sequence lies in M'. 0
In fact we proved more there is a bijection between two managements of two agencies of the same
cardinality. We proved it by showing a conjugacy. The same art of proof is valid for card A < card A'
if there is no special conditions on the management.

Theorem 3.2 Larger agencies have larger managements (and larger developments).

Proof: Let A" C A' and card A" = card A. If (wj,aj, Aj) E MA then (wj, aj o a- ,a(Aj)) E Ml" and
we may extend the definition of a' = a o o- 1 on the set A' \ A" by setting constant tasks. Clearly
(two, a', a(Aj)) E Ml'. 11
However if we want to have some additional conditions on the management we have to be more carefull.

Example 3.3 Assume that any initiated action terminates and let us consider the world W = {0..N-
1} and the task Z(w) = wt+ 1(modN) with Po = {0}. If card A = M then for M < N all the paths
starting from 0 land in M and stay there (wj = M for j large enough). For M > N all of them are
cyclic.

Theorem 3.3 In an agentural project (a project managed by an agency) when all the actions termi-
nate for any sequence (wi) we can pick the sequence ji --+ ox.

Proof : The chosen sequence is defined by the sequence of active actions. As each action terminates
the function ji Af -* Af is at most card A-to-1. 0

TR 95-01(201) 10 January, 1995
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4 Subshifts of finite type

If we suppose that the world W is finite and the project P is finite then we may use the modeling via
the theory of subshifts of finite type. In this section we give an outline of this theory.

Let KI be a finite set and X = KN be the set of (one-sided) sequences valued in 1C. The dynamical
system (X, a) is called a full shift, where the shift a acts on the sequence (a,) by skipping its first
element, a((a.)0= ) = (a' ,)no with a' = a,+,.

Now let T = (tm,n) be a k x k matrix, k = card KI, and tmn E {0, 1}. We define a subspace XT C X
by the condition (an) E XT iff for any n tan,an+, = 1. We can describe the sequences from XT as the
sequences for which the possible successors a' = an+1 E KI (in the sequence) of the element a = an E K
are described by the permission matrix T. The matrix is called irreducible if there is some m such

that T' has all entries strictly positive. It means that after m steps we may go from any state to any

state. The entries of T', which are obviously natural numbers, represent the number of paths joining
two states in m steps.

Example 4.1 Let IC = {1,2} and

T=( 10

then X is the set of all sequences of 1 and 2 and XT are the sequences with no two consecutive 2's.

If K = {1,2,3} and (11)
T= 1 1 0

then XT is the set of all sequences of 1,2 and 3 where 3 must be followed by 2 and preceded (if not
staying at the beginning of the sequence) by 1.

The dynamical system (XT, a) is called the subshift of finite type. For more information see [1]. In
this system the following notions are naturally defined.

" The metric. Let d be the discrete metric on the set K. Then we can define the metric d on X
(and on XT as well) by d((an), (b,)) = E d(a,, b,)/2'. The balls consist of sequences with same
values of in given finite number of initial coordinates. Two sequences are close if their sufficiently
long initial parts are identical.

"* The topology is the metric topology in the above sense. The base of neighbourhoods are the
so called cylinders, i.e. the sets with fixed values on some finite coordinates. The cylinders are

the unions of finite number of balls.

" The measure. Let (p.)k_ be a probability distribution on the set K. We may define the
probability of the cylinder by the product of pi's corresponding to the fixed values defining
the cylinder. This definition expands (via Kolmogorov's theorem) to the measure on Borel sets

in X. The measure on XT may be (with some care) derived by taking the conditional measure.

We want to describe the evolution of a system with acting agents as a sequence of states. One sequence
represents one possible development of a system. The state is a configuration of the system including
the real world and the agents with their private worlds, flags of actual activities and preguard and
postguard information.

January, 1995 11 TR 95-01(201)
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The idea borrowed from the subshifts of finite time is to reduce the space of all sequences of
configurations (states) to the sequences for which only some successors of a state are possible. This
corresponds on one hand to the conditions making actions acceptable and on the other to the permission
matrix. We shall be more specific in the next section.

Let us now consider in detail an easy example. The goal of this example is to present a system small
enough to make the full description readable but which has the features leading to more complicated
applications as a system with a flip-flop and a counter controlled by several agents.

Example 4.2 (An agent copies the flip-flop into a register) Consider the system S with a flip--
flop x and a register r. The flip-flop changes the value from 0 to 1 and from 1 to 0 independently from
the rest of the system. The aim of the acting agent A is to put in r the value of x in case when
the actual state of the flip-flop is different from the one remembered by the agent. The agent has two

registers : a working one w and an activity one a. 01

Let K be the set of following vectors (S, A) = ((x, r), (w, a)) with x, r, w, a E {0, 1}. The cardinality of

KC is 24 = 16. A 0-1 matrix T = (tvv,) describes the admissible followers V, E K of a state V in the
sequence of the evolution of the system (S, A).

Instead of writing the 16 x 16 matrix T we shall describe the permissions, the entry of the matrix
is 1 iff the following conditions are fulfilled :

1. ((x,r),A) can follow and be followed by ((x',r),A) for any choice of x, x' and r, A, i.e.

t((x,r),A),((x,,r),A) = 1. This is the independence of the flip-flop.

2. The value of w is changed into the value of x when some condition G(S) (a preguard from [3]) is
fulfilled, then also a changes from 0 to 1 (the agent becomes active). In other words under G(S)
for V = ((x,r),(w,O)) and V' = ((x',r),(x,1)) we have tvv = 1, for any x, x', w and r. In our
case G is fulfilled by any state S (there is no preguard condition).

3. When G(S) is fulfilled and a = 0 then the only possible follower of V is V' with a' = 1 and
W= X.

4. a may change from 1 to 0 only if w changes to w' = f(w) and y changes to F(S, A). f is a
predefined function depended of the aim of the agent, in our case f(w) = w, and F(S, A) = r or
f(w) depending if some condition (a postguard from [3]) is fulfilled. In our case F(S, A) = f(w)
if f(w) = w 7 x and y when f(w) = w = x. That means that tv,, = 1 for

(a) V = ((0, r), (1,1)) and V' = ((x', 1), (1,0)) or

(b) V = ((O,r),(0, 1)) and V'= ((x',r),(1,0)) or

(c) V = ((1, r), (1, 1)) and V' =((x', r), (1,0)) or

(d) V = ((1, r), (0,1)) and V'= ((x', 0), (0, 0))

5. We do not permit the register r to change in a different way than by converting it into the value

of w as described above at (4).

6. We do no say what happens to w when a stays equal to 0 (this situation is in our case excluded
by (2,3)), but when a, a' = 1 w cannot change. When a 1 and a' 0 there is no condition on
W.
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V\V' 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 11
1 1 1
2 11
3 1
4 1
5 11
6 11
7 1 1

8 1 1 1 1 1 1
9 1 1 1 1 1 1
A 11 11 11
B 1 1 1 1 1 1
C 11 11 11
D 11 11 11
E 11 11 11
F 11 11 11

Table 1: The permission matrix for a system copying a flip-flop. Explanation in the text.

Here is the whole permission matrix T. We represent the state by the hex-digit equal to x + 2r +
4w + 8a. The double lines separates different activities (a = 0 and a = 1) and single lines different w.
We mark only the entries equal to 1. Repeated double ones say that the flip-flop may change its state
in an independent way.

The first quadrant (a = 0, a' = 0 of the matrix is empty because in our example the system
must change from idle to active (condition 3) in particular because there is no restriction given by
a preguard, as G(S) is always fulfilled. The second quadrant (a = 0, a' = 1) shows the copying of x
into w' while leaving r. The third one (a = 1, a' = 0) shows what happens when the agent terminated
its job. There are two pairs. of entries in each row due to the fact that the new value of w' is not
determined. The register r changes only in rows B and D. The fourth quadrant shows that (up to the
flip-flop changes) the system stays identical when the agent is busy.

Let us take now the set AX of all (one-sided) sequences of symbols 0 ... F, and XT the subshift
derived from AX with the matrix T. The sequences from XT represent all possible evolutions of the
system which fulfill the rules of permission. We can now compare two evolutions, try to find an
invariant measure then attractors (in both topological and metrical sense).

5 The thermodynamics

There is already a very well developed theory of subshift of finite type. In this section we point out
how the notions of thermodynamics may be used in the investigations of dynamical systems consisting
of sets of sequences as the phase space and a shift as the transformation. This is based on the books
[1, 2].

Probability measures, introductory notions. Let (X,B, y) be a probability space, i.e. B is a
u-field of subsets of X (called measurable sets) and L is a nonnegative measure on B with Y(X) = 1.
Usually we work with a fixed transformation of the space. We want this transformation to preserve
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the measure (or the measure to be invariant with respect to the transformation).

An automorphism is a measurable bijection T : X -+ X (i.e. T-'E E B iff E E B) for which
p(T-'E) = yi(E), E E B. An endomorphism of a probability space is a measurable .transformation

such that p(T-hE) = y(E), E E B.

In case when X is a compact space and T is a homeomorphism (or a continuous map) one usually
sets B to be the family of Borel sets. The measure is called then a Borel prdbability measure. Let
M(X) be the set of Borel probability measures and MT(X) its subset of measures which are invariant
with respect to T. We have by definition y E MT(X) iff goT- 1 = I. For any p E M(X) we can.define
T*(p) = p o T-1.

Real-valued continuous functions C(X) on the compact metric space X form a Banach space with
the norm IfI 11 = supNEx If(x)I. The weak *-topology on the space C(X)* (i.e. the space of continuous
linear functionals a : C(X) , R) is generated by the sets of the form U(f, e, a0 ) = {a E C(X)*

ja(f) - a 0 (f)l < E} with f E C(X), E > 0, a 0 E C(X)*.

Riesz Representation. For each y E M(X) define a,, by ainu(f) = f fdy. Then f -+ a. is a
bijection between M(X) and {a E C(X)* : a(1) = 1 and a(f) _> 0:f> 0Q. We identify a,, and p. We
call the weak topology on M(X) the topology induced by this identification from the weak *-topology

on C(X)*.
We have following properties of the spaces M(X) and MT(X).

"* M(X) is a compact, convex, metrizable space.
This follows from the fact that the weak topology on M(X) is equivalent with the topology
induced by the metric d(y, v) = -,'_ If f, dp - f fn dvj,. I1f,1L-1/2n, where (f,) is a dense
subset of C(X).

"* MT(X) is a nonempty closed set of M(X).

T* is a homeomorphism of M(X) and MT(X) = {I E M(X) : T*(p) = p}. For pL E M(X) let
v be an accumulation point from . ,, 0 (T*)kp. Then v is T invariant.

" P E MT(X) iff (fo T)dy= f fdp for all f E C(X).
This is Riesz representation theorem applied to T*pL = Ip.

Suppose that A = (aij) is a n x n matrix of nonnegative integers. We may consider a (closed)
subset EA (resp. E+) of E (resp. E+) consisting of the sequences x such that ak,,+i > 0 for any k.

We may assume that A is such that for any k E F there is an x E E(+) with xo = k, otherwise one

can take an m x m matrix B with m < n and E(+) E(+). These sets with a shift transformations
are subshifts of finite type.

Let us state the following result. The shift r is topologically mixing (i.e. for any U, V nonempty

open subsets of E(+) there is an N such that TMU n V 5 0 for M > N) iff AM > 0 (i.e. all entries are
strictly positive) for some M.

In the set C(E(+)) there is a special of continuous real-valued functions on E(+) where is a special
family -FA of functions with positive H6lder exponent with respect to the metric dy. 0 E F'A iff
vark(O) := sup{I¢(x) - 0(y)I : xi = Yi: I•l :_ k} :_ ba , for some b > 0 and a E (0, 1).

Gibbs measures Suppose that a 'physical system' has possible states 1,...,n and the energies
of these states are El,...,E,. Suppose further that this system is not isolated but in permanent
contact with a 'large heat source' which remains at the constant temperature T. Therefore the total
energy of the system is not fixed and any state of the system may actually occur. There is a following
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'physical' fact. The probability pj that the system is at state j is given by Gibbs distribution pj =

exp(-i3Ej)/ ji exp(-/PEi), with 3 = 1/kT, k a 'physical' constant.

This is connected to the following 'mathematical' fact. Given real numbers a,,.. ., a,, the function
F(pi,. . .,p.) = Fi(ai - logpi)pi attains in the simplex i pi = 1, pi Ž_ 0 a maximum log Ei exp(ai)
at the point pj = exp(aj)/ 'i exp(ai). The quantity h(pl,. . . ,p,,) = ,i -pi logpi is called the entropy
of the distribution (pi). We assume 0 log 0 = 0 for x log x to be continuous at x = 0.

If we put ai = -fPEi then we have E aipi = -fPE with average energy E and the Gibbs distribution

maximizes S - fiE, where S stays for entropy. The minimized quantity P = E - kTS is called free
energy. Therefore the principle reads 'nature maximizes the entropy' when the energy is fixed but
'nature minimizes the free energy' when the energy is not fixed. One can generalize such a distribution

to the system EA.

Let 4 : EA -+ R be Hhlder continuous. Then there is a unique invariant measure y E M,(EA) for
which one can find constants c1 , c2 and P such that cl _< p{y : yj = xj,j = 0,..., m- 1}/exp(-Pm+

-7j=o 4 0 T'(x)) S C2. One can call P = P(0) a pressure of €. The exact definition of the pressure is
more complicated.

For such generalized 'Gibbs distribution' y one has the Variational Principle. h(p))+f (k dh = P(0).

The measure satisfying the above principle is called an equilibrium state. In one-dimensional lattice
the equilibrium states for H6lder continuous functions are (unique) Gibbs distributions.

We can call 4) E C(X) observables, and Y E M(X) states in the sense that (40) = f Odpt is the
average value of 0 in the space.

The configurations (i.e. the sequences x E EA) can describe possible evolutions of the system. The
matrix A describes pre- and post-guards. If we are interested in asymptotical behaviour of the limit
sets we may define an observable 4 and see what is a state I which realizes the variational principle.
This measure IL shows what configurations are 'important' from the point of view of the observable 4.

Now there is a couple of notions which needs to be interpreted in the setting of the behavioral
specifications. We may want to know what are energy, pressure, temperature ? We may want to look
for a 'good' potential energy, so that we see 'interesting' sequences with large probabilities. We may
want to understand what are equilibrium states y and observables 4 ? Are we interested at all in the
infinite setting ? Should we rather concentrate in the finite (but large) systems ?

The easiest case is when one considers as O(x) = -dy(x, S), the distance of the configuration to a
given set S C EA. In the case of an algorithm - by this I mean that we are interested in an evolution of
finite number of steps, i.e. finite iterations of the shift - this set S should be (forward) shift invariant
or even a fixed point of the shift. The function 4 cannot be split into two parts, describing the energy
of the site 0 (due to x0) and the potential energy of interactions between the site 0 and sites j for
j E Af. Nevertheless it describes in a sense how 'far' the actual configuration is from the desired form.
Natural candidate equilibrium measures (states) should have supports on S (the integral part is then
0) and spread equally on S to maximize the entropy. If the set S is not forward invariant then the
(invariant) measure cannot be supported only on S.

On the other hand the 'potential energy' may also describe the preferences of the observer, e.g. a
weighted distance to some disjoint sets of acceptable 'final' configurations.
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